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Hydrazine reactions with transition metals have implications for
industrially important organic synthesis applications and can be
informative substrates for modeling the metal-mediated reduction
of nitrogen to ammoni&.Under oxidizing conditions, hydrazines
can be converted into azo molecules with asM bond that is
useful in electronic and materials applicatid@szobenzene forma-
tion via disproportionation of 1,2-diphenylhydrazine is favored
thermodynamically{14.6 kcal mof?);3 however, a metal catalyst
with two-electron valence states is typically required to promote
the reaction. Although this reaction can be viewed as a transfer
hydrogenation, metal imides are often implied or even observed as

intermediates in the catalytic cycle, which proceeds via a hydrogen- !

atom abstraction step.
This Communication reports a new type of catalyst for the two-
electron disproportionation of diphenylhydrazine to azobenzene and

aniline. The results presented here are noteworthy because the met:

catalyst relies on two-electron valence changes that occur at a redox
active ligand rather than at the metal center. It has been shown
that redox-active amidophenolate ligands can provide the reducing
equivalents for the two-electron oxidative addition of halogens to
tetravalent zirconium centers with a formal dlectron count.
Similar zirconium complexes with redox-active diamide ligands
participate in four-electron reactivity with oxygéhigand-enabled,
two-electron reductive elimination of -€C bonds has also been
demonstrated for redox-active amidophenolate ligdrusyever,
further development of these reactions has been thwarted by
complicated ligand exchange proceskéserein, we report the
zirconium chemistry of a tetradentate, tetraanionic, bis(amidophe-
nolate) ligandN,N'-bis(3,5-ditert-butyl-2-phenoxy)-1,2-phenylene-
diamide, [NO>94-.2 Halogen oxidative-addition reactivity estab-
lished the two-electron redox reactivity of {8,¢9ZrL; (1a, L =
THF). Complexlaalso was found to catalyze the disproportionation
of 1,2-diphenylhydrazine to aniline and azobenzene. A two-electron
oxidized [N;O2*X|Zr-imido species is implicated as an intermediate
in the disproportionation reaction.
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Metalation of [NNO,94~ with ZrCl4(THF), proceeded smoothly
to form la according to the strategy summarized in Figure 1.
Zirconium complexla was obtained as a bright-yellow, micro-
crystalline solid. X-ray quality single crystals were obtained from
diethylether solutions chilled te-35 °C and yielded the seven-
coordinate structure shown as an ORTEP in Figure 1. The
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Figure 1. Synthesis and ORTEPs for §.,¢9ZrL 3 (1a, L = THF) and
[N2022]ZrClx(THF) (2). Thermal ellipsoids are shown at 50% probability.
Solvent molecules and hydrogen atoms have been removed for clarity.

molecule in the equatorial plane in addition to the two axial THF
molecules. NMR spectroscopy indicates that the solid-state structure
is largely preserved in solution. Sharp ligand resonances, consistent
with C,, symmetry, were observed in thid NMR spectrum along
with broad resonances for the coordinated THF molecules.
Oxidation oflawith PhICL occurred rapidly at-35°C, resulting
in an immediate color change from pale yellow to intense forest
green. Crystals of [BD,ZrCl(THF), 2, suitable for X-ray
crystallography were grown from ether/pentane solutions of the
complex. As shown in Figure 1, the two axial positions are occupied
by chloride ligands introduced upon oxidation. The tetradentate
ligand and one THF molecule comprise the equatorial plane of the
zirconium. The ligand oxidation state can be determined from
metrical parametefSNotably, a long C(7-C(12) distance of 1.455-
(9) A and short &N distances of 1.347(11) and 1.333(12) A are
indicative of the cyclohexadiene-diimine oxidation state depicted
for [N20,°2~. The ligand backbon& NMR resonances fa2 in
CsDs shifted upfield by 0.5 ppm to 7.52 and 6.35 ppm, consistent
with a cyclohexadiene-diimine oxidation state. A broad and intense
absorbance altpnax = 945 nm € = 20,800 Mt cm™1) in the UV—

tetradentate ligand occupies four equatorial positions of a pentagonalvis spectrum o is responsible for the dark-green color observed

bipyramid. The bite angles within the ligand are smal7g°),
leaving the oxygenzirconium—oxygen angle large at 143.28(14)
This open angle provides room for the coordination of one THF
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for the complexX
Complexla reacted with 1,2-diphenylhydrazine at room tem-
perature to afford azobenzene and anilih@dddition of 2 equiv
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of 1,2-diphenylhydrazine to a yellow solution b resulted in an
immediate color change to dark green. Upon completion of the
reaction the color change lightened to orange. THe NMR
spectrum of the final mixture revealed 1 equiv of azobenzene, 2
equiv of aniline, and [MO,®qZrL3 (1b, L = NH,Ph). GC-MS
confirmed the identity and quantities of the organic products.
Increased equivalents of 1,2-diphenylhydrazine led to longer
reaction times but yielded the same product ratios. Thus, 10 equiv
of hydrazine yielded 5 equiv of azobenzene and 10 equiv of aniline
after 1 day. Reactions with 100 equiv of 1,2-diphenylhydrazine were
completed in 6 days.

2PhHN-NHPh-> PhN=NPh+ 2NH,Ph

Preliminary experiments to elucidate the mechanism of the 1,2-
diphenylhydrazine reaction have been conducted. Concentration-
dependence studies suggest that the reaction rate is first ortler in
and first order in 1,2-diphenylhydrazine. Reactions carried out at
0.04 M 1 gave a pseudo-first-ordégys of 4.5(7) x 1075 s1,
Whereas reactions carried out under apn dtmosphere did not

change the ratio of azobenzene to aniline products, reactions carried
out in the presence of excess 9,10-dihydroanthracene afforded
aniline and anthracene with minimal azobenzene. These results
suggest that azobenzene is formed by H-atom abstraction rather

than by H elimination; however, reactions carried out with 1,2-
diphenylhydrazined, yielded only a small kinetic isotope effect of
1.25. Finally, the addition of excess aniline did not measurably
inhibit the disproportionation reaction, but no reaction occurred if
THF was used as the reaction solvent or in the presence of pyridine.
On the basis of the mechanistic studies above and the well-
established H-atom abstraction chemistry of metal imidos and metal
oxos! we propose the catalytic cycle shown in Scheme 1, the key
species being a 0,*]Zr(=NPh)L, oxidant formed in step &
This proposal is supported by the development of a dark-green
solution and a UV-vis absorbance atmax = 739 nm during the
reaction. Furthermorela reacted rapidly with the nitrene transfer
reagent jf-tolyl)N 3 to release Band give a similar green solution.

Though the putative zirconium-imido complex could not be isolated
from this reaction, in the presence of 1,2-diphenylhydrazine it
reacted further to releasp-{olyl)NH, and azobenzene.

A Zr=NPh intermediate could be formed in two ways (step c).
After coordination of 1,2-diphenylhydrazine tb, an o,3-NH
elimination of aniline could form the imide directly. This path is
analogous to the heterolytic activation of a peroxide @ bond
by a transition metal® Alternatively, the imide could be formed
by N—N oxidative additiof followed by 1,2-NH elimination from
the resulting zirconium bis(amide) complEWVe do not favor this
path because we have seen no evidence foNMxidative addition
reactivity with hydrazines such as Mé—NMe;, and 1-dimethyl-
aminopyrrole; however, we cannot rule out a reversible oxidative
addition followed by fast 1,2-NH elimination to generate the
zirconium imido species.

Complex 1 is the first example of a dmetal complex that
catalyzes a multielectron reaction through the use of ligand-based
valence changes. While the disproportionation of 1,2-diphenylhy-
drazine is thermodynamically favorable, there are few examples
of catalysts for this reactiotf. In the case ofl, the electrophilic
properties of the zirconium center coupled with the redox properties
of the ligand enable catalytic turnover in the system. Further studies
are required to determine if auxiliary reagents can be used to realize
selective N-N oxidations or reductions.
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